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Abstract

The ability of a quantum dot to confine photo-generated electron-hole pairs created interest

in the behavior of such an exciton in a “dot molecule”, being a possible register in quantum

computing. When two quantum dots are brought close together, the quantum state of the exciton

may extend across both dots. The exciton wave function in such a dot molecule may exhibit

entanglement. Atomistic pseudopotential calculations of the wavefunction for an electron-hole pair

in a dot molecule made of two identical InGaAs/GaAs dots reveal that the common assumption of

single-particle wave functions forming bonding/antibonding states is erroneous. The true behavior

of single particle electrons and holes leads to symmetry broken excitonic two-particle wavefunctions,

dramatically suppressing entanglement. We find that at large interdot separations, the exciton

states are build from heteronuclear single particle states while at small interdot separations the

exciton is derived from heteronuclear hole states and homo-nuclear electron states. We calculate

the entanglement of the excitons and find a maximum value of 80% at an interdot separation of

8.5 nm and very small values for larger and smaller distances.
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I. INTRODUCTION

A. Entanglement of an exciton in a molecule

Unlike its classical counterpart, a quantum bit (qubit) A, can exist not only in the two

states “0” and “1”, but in a linear combination of states: |ΨA〉 = α|0A〉 + β|1A〉 in a two-

dimensional Hilbert space. Accordingly, a pair of qubits A and B can exist in a superposition

of the four basis states |0A0B〉, |0A1B〉, |1A0B〉, |1A1B〉. The most important correlated qubit

states in quantum computation and quantum information1–3 are the maximally entangled

(Bell) states: |ΨAB〉 = 1√
2
{|0A0B〉 ± |1A1B〉} which allow quantum algorithms to outperform

classical algorithms1–3. Semiconductor quantum dots confine electrons and holes in discrete

energy levels a few nanometers in size4. These properties have driven speculations that

quantum dots may provide physical realization of qubits. Proposed implementations using

quantum dots include the presence vs. absence of an electron in a certain dot level5–7, the

spin-up vs. spin down state of an electron1,8–10, or the presence of an electron or a hole in

one dot vs. another dot11–14. An implementation of the latter proposition has been made

possible by the ability to grow pairs of vertically coupled self-assembled quantum dots with

varying separations15,16. This has offered the possibility of creating a register of two qubits

A and B in the two basis states top-dot (T ) and bottom-dot (B). A relatively simple

proposal is to use as qubit A the electron and as qubit B the hole of an electron-hole pair

(e-h, created by light excitation11) where the two qubits can be in the states “top” (T )

and “bottom” (B) of the dot-molecule. The so defined two qubits could form entangled as

well as unentangled states. One first considers the single-particle electron and hole orbitals

(analogous to molecular orbitals in H+
2 ) which form bonding and antibonding combinations:

φbonding
h = 1√

2
(hT + hB) ; φanti

h = 1√
2
(hT − hB)

φbonding
e = 1√

2
(eT + eB) ; φanti

e = 1√
2
(eT − eB) ,

(1)

where eT (eB) represents an electron in the top (bottom) dot; hT (hB), represents a hole

in the top (bottom) dot. When the inter-particle Coulomb interaction is introduced, these

single-particle states can form correlated excitons. Unentangled excitons form from simple

direct products e.g., φbonding
e ⊗ φbonding

h = 1
2
(eThT + eBhB + eThB + eBhT ) and thus contain

terms due to an e−h pair in a single dot, as well as terms due to an electron in one dot and a

hole in another. In contrast, the maximally entangled states form from sums and differences
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of simple direct products containing either e − h pair in one dot or dissociated states, but

not both11:

|a〉 =
1√
2
{|eBhB〉 + |eThT 〉} ; Bound exciton, bonding

|d〉 =
1√
2
{|eBhB〉 − |eThT 〉} ; Bound exciton, antibonding.

|c〉 =
1√
2
{|eBhT 〉 − |eThB〉} ; Dissociated, antibonding

|b〉 =
1√
2
{|eBhT 〉 + |eThB〉} ; Dissociated, bonding

(2)

Bayer et al.11 and Korkusinski et al.14 formulated simple models for the energies of the

four excitons starting from Eq. (2) in a double dot, and compared the predicted energies

with experiment. Experimentally, the emission spectra of a dot molecule showed11,14 two

exciton transitions separated by an energy ∆E. This energy ∆E was shown to increase with

decreasing interdot separation. This observation was in agreement with the theory where

the same behavior was obtained. However, we will show that in this case the agreement

between experiment and theory does not necessarily validate the theoretical assumption.

We offer here a fundamental theory of dot molecules based on a fully atomistic approach.

Our results differ significantly from those of Bayer et al.11 and Korkusinski et al.14, in that

we predict a reduced exciton energy in a dot molecule relative to isolated dots (the simple

models predict an enhanced energy), and that entanglement is generally weak, (the simple

models predict high entanglement). In what follows we first introduce naive models which

will serve to explain previous results (section IB). Following this we will describe our fully

atomistic results.

B. Simple models describing an exciton in a dot molecule

Before displaying our method and results, we briefly describe the expectations from a sim-

ple model. This will serve to describe the main assumption of Bayer et al.11 and Korkusinski

et al.14 and clarify the basis of more general approaches.

In order to decide weather to expect unentangled or entangled excitons in a system of

two interacting quantum dots one could attempt to use a two-site tight-binding Hamiltonian

with intuitively chosen parameters. The basis for this Hamiltonian can be constructed from

products of the electron and hole single particle states: |eThT 〉, |eThB〉, |eBhT 〉, |eBhB〉. The
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two-site Hamiltonian in this basis is given by:

H =




εT
e − εT

h + UTT
eh te th 0

te εB
e − εT

h + UBT
eh 0 th

th 0 εT
e − εB

h + UTB
eh te

0 th te εB
e − εB

h + UBB
eh




(3)

where {εT
e , ε

B
e , ε

T
h , ε

B
h } are the electron and hole on-site energies, {te, th} are the hopping

matrix elements, and {UTT
eh , U

TB
eh , UBT

eh , UBB
eh } are the electron-hole Coulomb matrix elements.

Different assumptions can be made here, leading to two models.

1. Model 1: εT
h = εB

h ; εT
e = εB

e ; te = th; U = 0

A simple trial assumption is to assumed (i) that the two dots, T and B forming the

molecule have identical on-site single-particle energies εT
h = εB

h and εT
e = εB

e , (ii) the hoping

matrix elements for electrons and holes are identical: te = th, (iii) the electron-hole Coulomb

matrix elements Ueh are negligible. The single particle electron and hole energy levels, for

this case are schematically shown in Fig. 1(a) where the electron and the hole levels e0, e1

and h0, h1 form bonding and antibonding combinations as in Eq. (1) so the energies split

symmetrically as a function of interdot separation. The excitonic electron-hole eigenvectors

of the Hamiltonian in Eq. (3) are given in order of increasing energy by:

|1〉 =
1

2
{|eThT 〉 − |eBhT 〉 − |eThB〉 + |eBhB〉}

|2〉 =
1√
2
{|eBhB〉 − |eThT 〉}

|3〉 =
1√
2
{|eBhT 〉 − |eThB〉}

|4〉 =
1

2
{|eThT 〉 + |eBhT 〉 + |eThB〉 + |eBhB〉} .

(4)

Excitons |1〉 and |4〉 are symmetric and therefore optically active (bright) while |2〉 and

|3〉 are energetically degenerate and optically dark. If we further assume that the hop-

ping matrix elements te and th increase when the interdot distance is reduced, we find the

spectrum depicted in Fig. 2a. The two bright states |1〉 and |4〉 move energetically apart,

where the energy of state |1〉 decreases by 2t while the energy and state |4〉 increases by 2t

with decreasing interdot separation. This qualitative behavior resembles the experimental
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observation14,17 where two peaks move apart and one could be tempted to fit the hopping

parameters t = te = th to the experimental splitting of the bright states. We will show later

that this model is in strong disagreement with the underlying physics.

2. Model 2: εT
h = εB

h ; εT
e = εB

e ; te = th; U 6= 0

A slightly more realistic model, similar to the one presented in Ref. 11 and 14, uses a

different assumption for (iii), taking Coulomb attraction into account. Here the electron-hole

Coulomb energies UTT
eh = UBB

eh for the exciton states, where both electron and hole reside on

the same dot, are assumed to be larger than the Coulomb elements of the dissociated exciton

UTB
eh = UBT

eh , where electron and hole are located on different dots. Setting UTT
eh = UBB

eh = U

and UTB
eh = UBT

eh = 0 in the Hamiltonian from Eq. (3) yields in increasing order of energy

the four exciton states |1〉, |2〉, |3〉 and |4〉:

|1〉 =
1√

2(1 + γ2
1)

{|eThT 〉 + |eBhB〉 − γ1(|eBhT 〉 + |eThB〉)}

|2〉 =
1√
2
{|eBhB〉 − |eThT 〉}

|3〉 =
1√
2
{|eBhT 〉 − |eThB〉}

|4〉 =
1√

2(1 + γ2
2)

{|eThT 〉 + |eBhB〉 − γ2(|eBhT 〉 + |eThB〉)}

(5)

with

γ1 =
U +

√
(4t)2 + U2

4t
γ2 =

U −
√

(4t)2 + U2

4t
(6)

Their eigenvalues are given by:

E1 =εe − εh +
1

2
U − 1

2

√
(4t)2 + U2 ,

E2 =εe − εh − U ,

E3 =εe − εh ,

E4 =εe − εh +
1

2
U +

1

2

√
(4t)2 + U2 .

(7)

We obtain two antisymmetric (dark) states |2〉 and |3〉 that are fully entangled (Bell)

states. The states |1〉 and |4〉 cannot be written as simple direct products and are, to some

degree, entangled. The limiting case of vanishing Coulomb (U → 0) interaction gives, as
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expected from Model 1, the states |1〉, |2〉, |3〉 and |4〉 from Eq. (4) where |1〉 and |4〉 are

unentangled. The case for non-zero but small hopping elements (t → 0) gives for |1〉, |2〉,
|3〉 and |4〉 the eigenstates |b〉, |d〉, |c〉 and |a〉, respectively, from equation (2) which are

all fully entangled states. The states |1〉 and |4〉 are bright while |2〉 and |3〉 are dark. An

increasing value of t introduces a mixing between the states |1〉 and |4〉, these states change

character and have presumably lower entanglement, while the states |2〉 and |3〉 remain

dark and fully entangled. The energetic evolution of the states |1〉, |2〉, |3〉 and |4〉 with

decreasing interdot separation is given in Fig. 2b. The energy separation between the two

bright states |1〉 and |4〉 is ∆E =
√

(4t)2 + U2. At large interdot separation, |1〉 and |3〉
as well as |2〉 and |4〉 are energetically degenerate. Both doublets are separated by U . The

excitonic wavefunction |1〉, |2〉, |3〉 and |4〉 are illustrated schematically on the right hand

side of Fig. 3 for large interdot separation (large d case) and small interdot separation (small

d case). Again, the result of two bright states |1〉 and |4〉 moving energetically apart with

decreasing interatomic distance are in agreement with experiment, spurring hope that the

theoretically predicted high degree of entanglement in this system could be experimentally

realized11,14 to the benefit of quantum computing.

However, there are reasons to doubt the validity of the simple diatomic-like analogue

of dot molecules, since actual self-assembled quantum dots contain tens of thousands of

atoms and the dots themselves are strained by the host matrix and submitted to random

alloy fluctuations. Indeed, electronic properties of such dots depend on their shape, size,

composition-profile and strain profile18 and can not19, for instance, be modeled by simple

single-band effective-mass models. Furthermore, the assumption te = th is very questionable

given the large mass ratio, me/mhh ≈ 0.06/0.40 ≈ 1/6 of electrons and heavy holes in the

GaAs barrier between the dots. Indeed, coupling between a larger number of bands than

afforded by simplistic models, and consideration of the strain field between the dots could

prevent effective tunneling of either electrons or holes. Thus, a more complete theoretical

treatment is called for.

In the present work we study entanglement in dot molecules, using the pseudopoten-

tial many-body approach, previously18,20,21 applied to successfully study many electronic

and optical properties of single dots. We consider molecules made of two vertically-stacked

lens-shaped InGaAs/GaAs dots of identical shape, size and composition with varying in-

terdot distances. The single-particle problem is solved within a multi-band, multi-valley
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pseudopotential plane-wave method22, including the effects of strain and spin-orbit. The

many-body problem is solved via a configuration-interaction expansion within the basis of

pseudopotential single-particle states. We find that the molecular description of Eq.(1) and

Fig. 1(a)) breaks down already for the single-particle hole states, which are localized on one

of the two dots, not forming bonding/antibonding combinations as in Eq.(1). This reflects

the fact that the actual potential experienced by holes in between the dots is repulsive for

its heavy-hole component, and this repulsion is reinforced when the dots are brought to-

gether, preventing effective inter-dot tunneling. This is different from the potential within a

real diatomic molecule, which is attractive everywhere, with reinforced attraction when the

atoms are brought together. Thus, “artificial dot molecules” behave differently from real

molecules, in that the single-particle molecular orbitals demonstrate broken-symmetry, akin

to heteronuclear molecules (e.g., HF), not homo-nuclear molecules (H2). This single-particle

symmetry-breaking effects in real dot molecules affects their many-particle excitonic states,

which now differ from the maximally entangled model states in Eq.(4) and Eq.(2), exhibit-

ing instead (|eBhB〉 + |eThB〉)-like behavior with low degree of entanglement. By varying

the interdot separation we predict the many-particle optical spectrum and identify interdot

separation that has the highest degree of entanglement. This establishes an important link

between quantum entanglement and the molecular geometry.

II. METHOD

A. Calculation of Exciton states

The method of calculation involves two separate steps. In the first step we solve the

single-particle Schrödinger equation for a superposition of strain-dependent atomic pseu-

dopotentials
∑

α

∑
n vα(r−Rn). These potentials are centered at the relaxed atom positions

Rn which are determined using the valence force field method23. The atomic pseudopoten-

tials vα include spin-orbit effects and are fit to InAs and GaAs bulk properties24. The

single-particle dot molecule wavefunctions ψ(r) are expanded in terms of strain dependent
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Bloch functions φn,
� (r):

ψ(r) =

NB∑

n

Nk∑

k

C �
,n φ �

,n(r) where (8)

φ �
,n(r) =

1√
N
u �

,n(r)ei
� · � , (9)

with band index n and wave-vector k of the underlying bulk solids, the number of primary

cells N , the number of k points Nk and the number of bands NB (“Strain dependent Linear

Combination of Bulk Bands” (SLCBB)22).

In the second step we follow the configuration interaction (CI) method and construct a

set of Slater determinants21:

|Φhi,ej
〉 = b†hi

c†ej
|Φ0〉 (10)

where b†hi
is the creation operator for holes and c†ej

the creation operator for electrons. The

Slater determinants |Φhi,ej
〉 can be calculated from anti-symmetrized products of single-

particle wavefunctions ψi
25.

The exciton wavefunctions |Ψ〉 are expanded in terms of this determinental basis set:

|Ψ〉 =
∑

hi,ej

A(hi, ej)|Φhi,ej
〉 . (11)

The matrix elements of the many-body Hamiltonian involves the calculation of the two

center integrals for particle a and particle b

〈ψa
i ψ

b
j |Û|ψb

j′ψa
i′〉 =

∫∫
ψ?

i (ra)ψ
?
j (rb)ψj′(rb)ψi′(ra)

ε(ra, rb)|ra − rb|
dra drb . (12)

The dielectric function ε is calculated using the model of Resta26.

The shape and size for our dot molecule are inspired from the experimental studies of

Bayer et. al11. The dots have a truncated cone shape with 12 nm (bottom) and 10 nm (top)

bases and 2 nm height. The composition profile is linear, starting from In0.5Ga0.5As at the

base, to pure InAs at the top of the dots. Both dots have one monolayer wetting layer. The

separation between the dots is given as the base-to-base separation d.
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B. Method of Analysis

The single-particle states can be analyzed by a projection onto valence and conduction

band states of the bulk at the Γ-point:

ψ(r) =
1√
N

NB∑

n

Nk∑

k

C ′�
,n[uΓ,n(r)ei

� · � ] ≡
NB∑

n

fn(r)uΓ,n(r) , (13)

with fn(r) being the envelope functions and

C ′
k,n =

∑

n′

Ck,n′〈uk,n′|uΓ,n〉 . (14)

Once this projection is available we classify the states according to the axial angular mo-

mentum Jz of the Bloch functions. We choose this classification because the eigenfunction

analysis in terms of the heavy hole, light hole and split-off character (according to J and

Jz) is not adequate for structures with C2v symmetry, like the dot molecule, since J is not

a good quantum number. For the forthcoming analysis we only consider contributions in

Eq. (13) from the first conduction band and the topmost three valence bands, so NB equals

eight (two conduction bands and six valence bands). The six valence band contributions are

divided into two Jz=3/2 states, which are exactly equivalent to the heavy hole states, and

four Jz=1/2 states. The four Jz=1/2 states are further split into states with |x〉, |y〉 valence

band character and states with |z〉 valence band character. We define

J(xy) for
|x〉 − i|y〉√

2
↑ ;

|x〉 + i|y〉√
2

↓ and (15)

J(z) for |z〉 ↑ ; |z〉 ↓ .

This is a meaningful classification for the calculated structures where the z ([001]) direction

is the growth direction.

Each envelope function fn can be further expanded in terms of the axial angular momen-

tum

fn(x, y, z) =
∑

m

fm
n (r, z) exp(imφ)/

√
2π (16)

and the axial expansion coefficients are defined as the norm of fm
n given by

a(m)
n =

1

2π

∫
|
∫
fn(x, y, z) exp(−imφ)dφ|2rdrdz. (17)
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For each single-particle wavefunction Ψ(r), the axial expansion coefficients a
(m)
n give the

weight of the state according to its Bloch function character (heavy hole, J(xy), J(z), con-

duction band, indexed by n) and according to its axial angular momentum character (S, P ,

D, etc.. , indexed by m).

Starting from the correlated excitonic wavefunctions the degree of entanglement can be

calculated. following the definition of Von Neumann. For the qubits A or B the entropy of

entanglement S2,3 is given by

S(Ψ) = − Tr ρA log2 ρA = − Tr ρB log2 ρB, (18)

where ρA is the reduced density matrix for qubit “A” (the electron), and ρB is the reduced

density matrix for qubit “B” (the hole). The density matrices are calculated from the

correlated CI exciton density ρ

ρ = |Ψ〉〈Ψ| =
∑

hi,ej ,hk,el

A(hi, ej)A
∗(hk, el)|Φhi,ej

〉〈Φhk,el
| (19)

=
∑

hi,ej ,hk,el

ρhiejhkel
, (20)

where A(hi, ej) are the CI expansion coefficients (see Eq. 11). ρA is obtained by tracing

over all but one pair of indices

ρA = ρejel
=

∑

hi,hk

ρhiejhkel
. (21)

For the maximally entangled state S(Ψ) = 1, while S(Ψ) = 0 for a non-entangled state.

The correlated excitonic wavefunctions can also be analyzed in terms of the probabilities

to find the electron or the hole in the top or in the bottom dot. A mask operator M̂,

which selects a certain region of space (e.g. the top of bottom dot), can be applied to the

single-particle electron or hole wavefunctions:

ρ̃T/B
eiej

= 〈ψei
|M̂T/B|ψej

〉 . (22)

The excitonic density can then be written as a sum of weighted products of these projected

densities:

ρ̃T
eiej

⊗ ρ̃T
hihj

, ρ̃T
eiej

⊗ ρ̃B
hihj

(23)

ρ̃B
eiej

⊗ ρ̃T
hihj

, ρ̃B
eiej

⊗ ρ̃B
hihj

. (24)

From these densities, the four probabilities to find the electron and the hole in the top or in

the bottom dot can be calculated.
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C. Strain modified band-offset calculations

To appreciate the effect of strain on the hole states we perform strain-modified band-

offset calculations. From the relaxed atomic positions –obtained using the valence force field

(VFF) method– the strain field can be calculated for each atom from the deformation of

its tetrahedron of nearest neighbors. The strain modified band offsets Hamiltonian depends

on the six irreducible components of the strain tensor, the three deformation potentials

(hydrostatic and two uniaxial) and the spin-orbit splitting27. For the unstrained bulk its

eigenvectors are the heavy hole, light hole and split-off bands, while strain induces mixing of

these three bands. The corresponding eigenstates were analyzed by giving to each solution

a weight according to their character: heavy hole, J(xy) and J(z) (see Eq. 15).

III. RESULTS FOR THE SINGLE PARTICLE STATES

A. Largely separated dots (d → ∞).

Figure 1b) shows the single particle electron and hole energies as a function of interdot

separation. For large interdot separations the single-particle hole state h0 and h1 are ener-

getically almost degenerate. Figures 4 and 5 show the electron and hole wavefunctions as

a function of the interdot separation d. In these figures, the envelope functions fn [see Eq.

(13)] averaged over eight atom cells are plotted. The physical shape of the dot (truncated

cones) is shown in grey, whereas the wavefunctions are depicted as two isosurfaces with two

shades of color enclosing 75% and 40% of the state density. The hole states h0 and h1 are

localized on the bottom and top dots respectively (Fig. 5). This behavior resemble H+
2 with

very long bond length where the orbitals are localized at a single atom, rather than forming

a resonance.

For the single-particle electron states e0 and e1 the wave functions (Fig. 4) are mainly

localized on the top and bottom dots respectively. The energy splitting between these states

(Fig. 1b) reflects the effect of alloy fluctuations, fully taken into account in our calculations,

which make both dots somewhat dissimilar even if d → ∞. These local fluctuations result in

a lifting of the degeneracy by 3.1 meV for e0 and e1 and 0.2 meV for h0 and h1 (energy values

taken from our largest interdot distance of 22.6 nm). Thus, for large interdot separations, a

diatomic dot made of truncated-cone shaped constituents is not equivalent to a homo-nuclear
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diatomic molecule (D2∞ symmetry like H2), but rather to a heteronuclear molecule (D2d

symmetry like HF). Figure 6a)b) gives the qualitative picture where for the electron and the

hole the “molecular” single particle orbitals (MOs) are constructed like for a heteronuclear

molecule, i.e., the characters of the MOs are dominated by one of the single-particle states.

This is justified by the fact that, at large and intermediate (i.e., for distances larger than

8 nm) interdot separations, the hopping matrix elements for holes th is negligible while the

one for electrons te is small (this will be shown quantitatively in section V) compared to the

“polarization energy” of the molecule Vp (2Vp ' e0 − e1 = 3.1 meV for d → ∞).

B. Closely-spaced dots

We see in Fig. 4 that the electron states e0 and e1 form bonding-antibonding pairs

as suggested by Eq.(1), whereas the hole states h0 and h1 (Fig. 5) do not, forming instead

symmetry-broken (heteronuclear-like) states. Figure 6c)d) shows this hybrid behavior where

electrons form symmetric/antisymmetric combinations of MOs, akin a homonuclear dimer,

while holes give rise to heteronuclear MOs localized on one or the other dot. There are two

reasons for this behavior, explained in the following two paragraphs.

1. Hole states experience a repulsive barrier

The first reason for the broken-symmetry hole behavior is the strong repulsive barrier be-

tween the two dots experienced by the heavy hole component (dominant) of the hole states.

To appreciate these facts we performed strained modified band offsets calculations (section

IIC) for different interdot separations. Figure 7 shows the results for the first two hole

confining potentials for three different inter-dot separations. The character [heavy hole,

J(xy) and J(z)] of each eigenstate is represented by a certain symbol of size proportional

to the weight of the character. The heavy hole confining potential is the relevant quantity

for the energetics of the hole states since hole states are to over 80% heavy hole-like. Ex-

amination of the heavy hole confining potential (circles in Fig. 7) reveals that, unlike the

case for electrons (not shown here) the barrier is repulsive for heavy holes. This repulsive

barrier was also reported28 for pure InAs truncated pyramid dots. Furthermore the effective

barrier felt by the hole states, increases upon reduction of the inter-dot separation suppress-
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ing tunneling and the ability for holes to form bonding-antibonding states. Figure 1b also

shows that the hole states move to lower energy when the interdot separation is reduced, in

agreement with the increasing barrier height between the dots.

2. Due to the lack of inversion symmetry between the dots, the bottom dot is more favorable

for holes

The lack of inversion symmetry between non-spherical (e.g. lens-shaped) dots leads to

heteronuclear hole states. This can be seen in the top panel of Fig. 7 where indeed the

confinement potential experienced at the base of the top dot is different than that experi-

enced at the base of the bottom dot. Fig.1b shows that the hole states h0 and h1, which

are energetically almost degenerate at large interdot separation, split when the distance is

reduced, showing an increasing preference for holes to be in the bottom dot with diminish-

ing interdot separation. This can be understood using a simple strain picture like given in

Fig. 8. A single truncated cone or truncated pyramid dot with homogeneous composition

is nearly unstrained on the apex while it is stained at the base. The top right panels of Fig.

8 show a cubical unit cell for the unstrained case and an elongated parallelepiped for the

case of biaxial strain. The heavy holes prefer the highly strained region near the base and

localize preferentially in this region as suggested by the strained bulk band structure given

on the right side of Fig. 8. When two dots are close together the strain at the top but also

at the base of the upper dot is almost hydrostatic due to the compression of the dot through

the sandwiched material. The base of the lower dot, however, experiences biaxial strain and

remains favorable for heavy holes. The magnitude of this effect should be stronger for pure

InAs dots since it experiences more strain than our alloyed InGaAs dot. With a very strong

preference for hole states to localize on the bottom dot, not only the first (like on our case)

but the first few hole states might localized on the bottom dot. This expected behavior

has been reported by Sheng and Leburton28 performing eight band k.p calculations of a

pure InAs truncated pyramid dot molecule where the first two single particle hole states are

localized on the bottom dot. Such a localization might have detrimental consequences for

the achievement of entanglement.
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3. The component of the hole wave function responsible for the hole tunneling has P -symmetry

Figure 7 shows how the J(z) confinement potential (triangles pointing downwards) be-

comes attractive between the dots at small interdot separation. The effect of this attractive

potential on the hole state h0 is shown in Fig. 9, where the single-particle hole state h0 of our

pseudopotential calculation is decomposed according to its Bloch– and envelope function–

character (see Eq. [17]). Only the main contributions: the symmetric heavy hole state

with pure S envelope function and the antisymmetric J(z) state with pure P envelope

function are shown. Figure 9 shows that when the interdot distance is reduced, the heavy

hole character diminishes while the J(z) character increases. This is in agreement with the

qualitative picture given by the strained modified band offset calculation where the J(z)

confining potential becomes attractive between the dots at small interdot separation. The

part of the (multi-band) wave function responsible for the hole tunneling is therefore anti-

symmetric P -like with Bloch function character J(z). This will have consequences on the

optical properties described in section IV showing a dark exciton state below the bright

exciton state. We underline at this point that the proper treatment of hole tunneling (and

therefore of all optical properties and entanglement) requires a multi-band treatment like

eight band k.p28, tight-binding29 or our pseudopotential approach and can not be accounted

for by single-band effective mass approaches30,31.

IV. RESULTS FOR THE MANY-PARTICLE EXCITON STATES AND THE OP-

TICAL SPECTRUM

The energies of the four lowest exciton states formed from the single-particle states above

are shown in Fig. 2c where the dot size is proportional to the oscillator strength. To

characterize the excitonic wave functions we have calculated the probability to find both

particles in the top dot (eThT ), both particles in the bottom dot (eBhB) and to find the

particles in different dots (eBhT , eThB) for each excitonic wavefunction. The results are

given for the first four excitons in the top four panels of Fig. 10). Different symbols have

been used for different occupations. The integration in equation (22) is performed over the

volume above (top dot) and below (bottom dot) the equidistant plane between both dots.

We next discuss the salient features of the exciton energies and the optical spectrum.
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A. Largely separated dots.

Figure 10 shows that the excitons |1〉 and |2〉 are localized on the top and bottom dots

respectively. The states |3〉 and |4〉 are dissociated excitons where the electron and hole are

localized on different dots. The excitons are therefore simple products of the single-particle

molecular orbitals given in Fig. 6 a)b): |eThB〉,|eThT 〉,|eBhB〉 and |eBhT 〉. The on-site

electron-hole Coulomb attraction U lowers the energy of the |eThT 〉 and |eBhB〉 excitons

leading to the energetic order given in Fig. 3: |eThT 〉, |eBhB〉, |eThB〉 and |eBhT 〉. The

|eThT 〉/|eBhB〉 excitons are separated from |eThB〉/|eBhT 〉 by the on-site Coulomb attraction

while |eBhB〉 is separated from |eThT 〉 (and |eThB〉 from |eBhT 〉) by the polarization energy

2Vp. An interesting effect is already revealed at this point: although the material properties

(composition, shape, size) of both dots are identical, their exciton energies are different, as

can be seen from the existence of two optically active lines in the spectrum of Fig.2c) for large

interdot separation. Naturally, if the two dots would have different sizes or compositions, as

is often the case during growth, even greater dot inequivalence will ensue.

B. Merging of the Excitons |1〉 and |2〉: a many-body effect

Fig. 11 shows in more detail the calculated spectrum of the fist two excitons |1〉 and |2〉
as a function of the interdot distance. When the interdot distance is reduced from 17 nm

to 8.5 nm both excitonic peaks move to higher energy and move closer together until only

one exciton peak is observed at d = 8.5 nm. The diminishing energy difference between |1〉
and |2〉 is an excitonic effect. To appreciate this fact we plotted in Fig. 12 the electron-hole

single particle energies: |TT 〉 = e0 −h1, |BB〉 = e1 −h0, |BT 〉 = e1 −h1 and |TB〉 = e0 −h0.

At large interdot separation where the excitons |1〉, |2〉, |3〉, |4〉 (including two-body effects)

are almost pure |eThT 〉, |eBhB〉, |eThB〉, |eBhT 〉 the comparison between |TT 〉, |BB〉, |BT 〉,
|TB〉 (Fig. 12) and |1〉, |2〉, |3〉, |4〉 (Fig. 2c) is meaningful. |TT 〉 and |BB〉 move apart while

|1〉 and |2〉 move together when d is reduced, showing the excitonic nature of the latter effect

which can be understood as follows: At the single-particle level we saw in section III B that

the increasingly repulsive barrier for the heavy holes with decreasing interdot separation

lowers the single-particle hole energies (Fig. 1b). This destabilization goes along with

delocalization of these states. With decreasing interdot distance, the single-particle electron
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state e0 becomes delocalized as well, but for another reason: it creates a bonding state with

increased occupation probability between the dots (Fig. 4). Both, the delocalization of the

electron state e0 and the delocalization of the hole states h0 and h1 contribute to lower

the e − h Coulomb attractions UTT
eh and UBB

eh . The delocalization of the excited hole state

h1 (localized on top) is stronger than the delocalization of h0. The magnitude of UTT
eh is

therefore reduced more severely than UBB
eh with decreasing d. This shift is an excitonic effect

which is missed by theories restricted to the single-particle level28,32.

C. Anti-crossing of |1〉 and |2〉 at dc: bonding-antibonding exciton splitting

At the critical distance dc the energy difference between |1〉 ' |eThT 〉 and |2〉 ' |eBhB〉
is very small, allowing them to form bonding and antibonding excitons |eThT 〉 + |eBhB〉
and |eThT 〉 − |eBhB〉 as shown in the “critical d” column of Fig. 3. The energy differ-

ence between these excitons is 0.4 meV and is conceptionally very similar to the Davydov

splitting33 observed in molecular crystals. Since the excitons |eThT 〉 and |eBhB〉 are highly

symmetric their bonding and antibonding combinations should yield highly symmetric and

antisymmetric excitons with strong entanglement. A quantitative analysis of the entangle-

ment will be given subsequently. Interestingly the antibonding combination (optically dark)

is energetically below the bonding combination (optically bright). This is due to the fact,

that the single particle hole states do no form an ssσ-bond, like the electron, but a weak

ppσ bond34 (that will lead to a negative hopping parameter th in section V) as described

in section III B 3. From a molecular point of view this situation is unexpected since dimers

with electric dipoles of the excitons align “head to tail” show a bight state below the dark

state. In our solid state analogous, the two “molecules” are coupled via strain and yield the

unexpected “head to head” alignment typical of dark states below bright states in dimers.

D. Closely spaced dots: forbidden transitions become allowed

The mixed hetero/homo-nuclear behavior of holes/electrons, as given in Fig. 6 c)d), gives

rise to excitonic states that are combinations of single-dot localized excitons (|eThT 〉, |eBhB〉)
and dissociated excitons (|eThB〉, |eBhT 〉) (Fig. 10). These combinations are given in Fig.

3 where electrons are obviously building bonding/antibonding states and holes remain top-
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or bottom-localized. At small d all the excitons are neither symmetric nor antisymmetric

and all are, to some extent, bright. This can be seen in Fig. 2c where the states |3〉 and |4〉
start to gain some oscillator strength as marked by the small dots visible for base-to-base

separations smaller than 8 nm. These states were optically inactive (dark) at large interdot

separation since electrons and holes were located on different dots forming purely dissociated

states (see Fig 10 and 3).

E. Degree of entanglement as a function of distance

The calculated degree of entanglement is given in the lower panel of Fig. 10. We see

that it reaches the maximum value of 0.8 for a distance of dc = 8.5 nm and decays strongly

for larger or shorter distances. From this result it is obvious that a judicious choice of

interdot separation is crucial for quantum computation applications. Especially the fact

that small distances show unentangled states is surprising. Entanglement is a result of a fine

balance between the energetic of the two dots and the electron and hole interdot coupling.

Both of these quantities depend on the interdot separation as well as from the material

properties of the dot. Simple models which assume high symmetry Hamiltonian like the

theories presented in the introduction or introduced in Ref. 11–14 naturally yield maximally

entangled wavefunctions. The calculation as well as the measurement of the entanglement

requires the treatment of atomistic effects (alloy fluctuation), strain and correlations.

F. Exciton dissociation energy

The energy difference between states |1〉 and |2〉 (electron and hole on one dot) and |3〉
and |4〉 (electron and hole on different dots) is the exciton dissociation energy35,36. Fig.

2c shows that our calculated dissociation energy is ∼20 meV, and it reaches its minimum

value at d = 8.5 nm. The value of 20 meV is considerably smaller than what was found

in colloidal CdSe dots (150-300 meV)35,36, and suggests that photo-conductivity has a low

activation energy in self-assembled dot molecules.
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G. Theoretical vs. experimental spectra.

In the recent experiments of Somintac et al.37 and He et al.38 a blue shift of the PL has

been observed with decreasing interdot distance, in agreement with our results. Earlier,

Migliorato et al.39 reported a red shift of the ensemble PL for stacks of vertically aligned

quantum dots. Our predicted blue shift only applies to quantum dots separated by enough

buffer material to still be distinct entities. The limiting case of a base-to-base separation

equal to the dot height naturally yields a red shift typical of the formation of one single

larger quantum dot. The theoretical results for the magnitude of the splitting of the bright

states |2〉 and |3〉 in Fig.2c are in good agreement with the experiments11–14. The agreement

is even better if a systematic error of 1 nm between the interdot separation given in the

experiments and the calculated base-to-base separation is assumed. We then compare the

theoretical results: 42.1, 32.8, 24.8, and 16.8 meV (for the separations 5.1, 5.7, 6.8, 7.9 nm)

with the experimental 42, 30, 17, 12 meV (for the separations 6, 7, 8, 9)11–14. However,

unlike what is reported in the experiment, we find that the bright states are split which

leads to four allowed excitons. In the case of our calculation, the appearance of four states

is due to the random alloy fluctuations and the strain which affects the electronic properties

of both dots and make them dissimilar. In the experiment we would expect the dots to be

even more dissimilar, since the growth condition for the top and bottom dots are different,

and four peaks at short interdot distance should be observed. It is however conceivable to

observe only two peaks at small interdot separation and one peak at large interdot separation

when both dots have the same excitonic ground state energy. This is expected to be the

exception rather than the rule but might have been the case in Ref.11,13,14.

V. DISTANCE DEPENDED TIGHT BINDING FIT

The pseudopotential CI results can be fitted to the tight binding parameters of eq. 3

and yield the on-site matrix elements {εT
e , ε

B
e , ε

T
h , ε

B
h }, the hopping parameters {te, th} and

the electron-hole Coulomb matrix elements {UTT
eh , U

TB
eh , UBT

eh , UBB
eh } presented in Fig. 13.

The analytic expressions for the distant dependent parameters are given in table I. We

note several physical observations: (i) The on-site energies for the top and bottom dots are

different, especially for holes. The difference εT
e 6= εB

e and εT
h 6= εB

h comes from strain effects
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and random alloy fluctuation, as discussed in section IV. The difference decreases at d → ∞,

but is still present for electrons. (ii) On-site energies εe and εh depend on interdot separation

distance because of strain coupling. (iii) The electron and hole hoping parameters are well

fit by exponentials Ae−d/d0 . This is consistent with tunneling. We find similar tunneling

depths d0 for electrons (2.15 nm) and holes (3.64 nm), but the holes prefactor Ah = −4.25

is much smaller than the electron prefactor Ae = −255 meV. (iii) The magnitude of the

on-site Coulomb energy decreases (from -29 meV to -26 meV), while the interdot interaction

is 1/εeffdeff, where the effective distance deff =
√
d2 + ∆2 reflects a charge spread ∆ of about

4 nm. The prefactor of approximately 100 in the interdot interaction is an effective dielectric

constant around 14.5, expressed in meV and nm.

In light of these results it is obvious that the starting assumption about the on-site and

hopping matrix elements adopted in the introduction and in Ref. 11,13,14 is not justified.

The energetic of the hole vs. electron states with varying distance turns out to be very differ-

ent, calling for a separate treatment of electrons and holes which might lead to a breaking of

the symmetry of the exciton states. The electron states follow bonding/antibonding behav-

ior while the holes keep, up to the smallest interdot distance, their top/bottom character.

This difference in the behavior of electrons and holes is related to the different potential

barriers experienced by the electron and the holes, as shown in Section III), and to their

different effective masses. This is reflected by the very different tunneling matrix elements

in Fig. 13. The electron and hole states are not only different because of their tunneling

properties but also because of the way they react to the intrinsic properties of the dot. The

single particle energy of the electron states located on two well separated top and bottom

dots is different by about 3 meV. The same energy difference for the hole states is almost

zero. For these reasons, a more elaborate model is necessary and is now, due the detailed

results of the pseudopotential-ci calculations, and the derived tight-binding picture, possible

to derive.

VI. SUMMARY

We have shown that the proper theoretical treatment of excitons in dot molecules requires

an accurate description on the single particle level (multiband coupling and strain effects

must be taken into account, single-band approaches miss the qualitative picture) as well as

19



on the few-particle level. We showed that simplified high symmetry models commonly used

in the literature yield qualitatively erroneous results.

At short interdot separations, the single particle physics of the electron states is close to

the one of a homonuclear dimer where the orbitals form bonding/antibonding states. The

hole states remain, even at short interdot distance, localized on one or the other dot. We

showed that the hole behavior can be explained by i) strain, that inhibits the tunneling, and

ii) the lack of inversion symmetry between self-assembled quantum dots. This hybrid homo-

heteronuclear behavior of electron and hole leads to four optically allowed excitons with low

degree of entanglement.

At large interdot separation, both electron and hole behave like a heteronuclear molecule

forming two bright and two dark excitonic states, all four unentangled.

At a critical distance of 8.5 nm (for our dots) we predict an anti-crossing of the two

bright excitons accompanied by a high degree of entanglement ( 80%) of these states. We

show that a many-body effect derived from strain is responsible for the energetic alignment

of these two exciton states. At the point of energetic alignment, the excitons from bonding

and antibonding exciton states. The lower energy states is shown to be antisymmetric and

therefore optically dark.

In the last section we use our many-body CI results to parameterize a 4x4 tight binding

Hamiltonian and give analytic expressions for the parameters. These parameters could be

used by others to model self-assembled quantum dot molecules.
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FIG. 1: Single-particle energies assumed in Model 1 and Model 2 (panel (a)) and results from

our pseudopotential calculations (panel (b)). The reference energy for our results is set to the

unstrained valence band maximum of GaAs.
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and Model 2) and for our pseudopotential-CI results (Actual results). The circles on the excitonic

lines of the lower panel are proportional to the oscillator strength of the transitions.
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FIG. 3: Schematic representation of the excitonic wavefunctions obtained from our pseudopotential

CI calculations (left), and in the simple model presented in the introduction (right). The symbols

are: +(hole), -(electron) or ±(exciton). The two spheres denote top and bottom dots. The value

of the critical distance is 8.5 nm for our specific case.
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FIG. 4: Square of the single-particle electron wavefunctions e0 and e1 for different interdot separa-

tions. The shape of the dots is given in light grey and the two isosurfaces with two different tones

of red contain 75% and 40% of the state densities.
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FIG. 5: Square of the single-particle hole wavefunctions h0, h1, h2, h3,h4 and h5, for different

interdot separations. The shape of the dot is given in grey and the two isosurfaces with two

different tones of blue contain 75% and 40% of the state densities.
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FIG. 8: Qualitative picture of the strain in a truncated cone and in a truncated cone molecule.

The deformation of the unit cell at the base and the apex of the dot is schematically given with

the corresponding strained bulk band structure. The base of the single dot and the base of the

bottom dot (for the dot molecule) is shown to be more favorable for heavy holes.
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FIG. 10: Upper panels: Localization of the first four exciton states numbered with increasing

energy as |1〉, |2〉, |3〉, |4〉, as a function of the interdot distance. On each panel, four lines describe

the occupation probability to find the electron and the hole both on the bottom dot (eBhB), both

on the top dot (eT hT ), the electron on the top and the hole on the bottom (eT hB) and the electron

on the bottom and hole on the top dot (eBhT ). Lower panel: Entropy of Entanglement as a

function of the base-to-base dot separation.
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FIG. 12: Differences between single particle electron and hole energies: |TT 〉 = e0 − h1, |BB〉 =

e1 − h0, |BT 〉 = e1 − h1 and |TB〉 = e0 − h0. The denomination |TT 〉, |BB〉, |TB〉 and |BT 〉,

where T stands for top and B for bottom, is only meaningful outside the shaded area, for large

interdot separations, since the single particle electron states at short base-to-base separations are

neither top nor bottom.
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FIG. 13: Effective parameters for two site Hamiltonian H (Eq. (3)), distilled from our many-body

pseudopotential calculation. The lines are a parameterized fit to our data points, listed in Table (I).
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TABLE I: Parameterization of the distance dependence of our effective two-site Hamiltonian,

Eq. (3). These functions are plotted as solid lines in Fig. 13.

Parameter (meV) Distance Dependence (d in nm)

εT
e −1450 − 436d−1 + 3586d−2 − 7382d−3

εB
e −1449 − 452d−1 + 3580d−2 − 6473d−3

εT
h 167 + 129d−1 − 2281d−2 + 6582d−3

εB
h 163 + 274d−1 − 3780d−2 + 9985d−3

te −255 exp(−d/2.15)

th −4.25 exp(−d/3.64)

UBB
eh −29.0 + 7.98/d

UTT
eh −29.6 + 19.6/d

UBT
eh −99.1/

√
d2 + (3.72)2

UTB
eh −98.5/

√
d2 + (4.21)2
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